
T STI2D Cours

Chap 2 : Les ondes électromagnétiques SANTE livre p 179-191

Physique Chimie

I.Les rayonnements électromagnétiques utilisées en médecine

Les rayonnements électromagnétiques peuvent être représentées par des ondes qu'on peut classer suivant leur longueur d'onde λ (lambda) exprimée en m ou suivant leur fréquence v (nu) exprimée en λ

A chaque domaine d'onde on peut trouver une application en médecine :

✓ Etablir des diagnostics

(1) La radiographie: utilise des rayons X

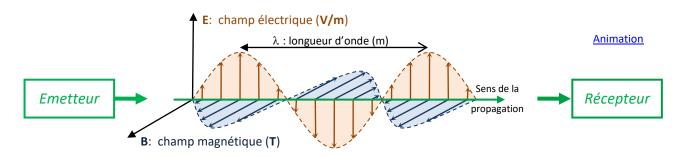
(2) La thermographie: utilise les infrarouges

(3) La fibroscopie : utilise la lumière du visible

(4) L'IRM: utilise des ondes radios

(5) La scintigraphie : utilise des rayons gamma γ

✓ Réaliser des traitements thérapeutiques

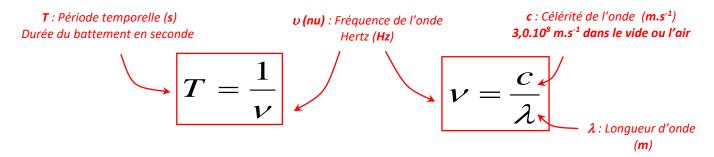

(6) Le laser : utilise de la lumière

(7) La radiothérapie : utilise des rayons X ou des rayons gamma γ

II.Qu'est-ce qu'une onde électromagnétique ?

Une onde électromagnétique est la combinaison d'un champ magnétique \vec{B} d'un champ électrique \vec{E} qui se propagent en ondulant. Ces champs sont créés par des charges électriques qui oscillent (émetteur de l'onde). B s'exprime en Teslas (T) et E s'exprime en Volts par mètre (V/m).

Le champ \overrightarrow{E} et le champ \overrightarrow{B} sont tous les deux perpendiculaires à l'axe de propagation : l'onde est transversale.

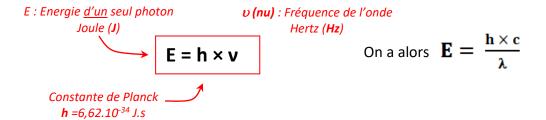

Une onde électromagnétique peut se propager dans le vide où elle s'y déplace suivant l'axe de propagation à la vitesse $c = 3.10^8 \text{ m.s}^{-1}$ (soit trois cent mille kilomètre par seconde).

T STI2D Cours

Chap 2 : Les ondes électromagnétiques SANTE livre p 179-191

Physique Chimie

III. Les relations importantes


IV.L'autre représentation du rayonnement électromagnétique

Animation

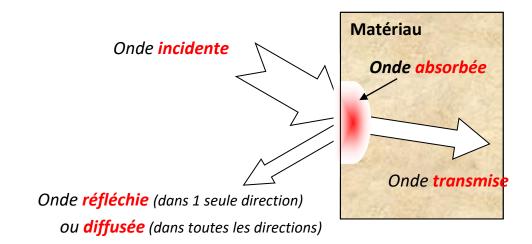
Un rayonnement électromagnétique peut être représenté par une onde mais également, d'une autre façon, par une petite particule appelée **photon**.

Dans cette autre représentation du rayonnement, le photon est une particule sans charge et sans masse qui se déplace à la vitesse $c = 3.10^8 \text{ m.s}^{-1}$ en transportant l'énergie du rayonnement.

Les deux représentations du rayonnement sont liées par le fait que **l'énergie E du photon est** proportionnelle à la fréquence v de l'onde électromagnétique :

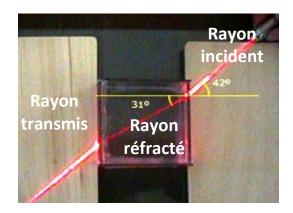
Remarques:

✓ On exprime souvent l'énergie d'un photon en eV (électronvolt) qui est une unité plus appropriée que le Joule.


✓ Les différentes fréquences électromagnétiques émises sont appelées des radiations.

T STI2D Cours

Chap 2 : Les ondes électromagnétiques SANTE livre p 179-191


Physique Chimie


V. Interaction des ondes électromagnétiques avec les matériaux

